Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 11(1): 21944, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753952

RESUMO

Biological hotspots are places with outstanding biodiversity features, and their delineation is essential to the design of marine protected areas (MPAs). For the Central Coast of Canada's Northern Shelf Bioregion, where an MPA network is being developed, we identified hotspots for structural corals and large-bodied sponges, which are foundation species vulnerable to bottom contact fisheries, and for Sebastidae, a fish family which includes species that are long-lived (> 100 years), overexploited, evolutionary distinctive, and at high trophic levels. Using 11 years of survey data that spanned from inland fjords to oceanic waters, we derived hotspot indices that accounted for species characteristics and abundances and examined hotspot distribution across depths and oceanographic subregions. The results highlight previously undocumented hotspot distributions, thereby informing the placement of MPAs for which high levels of protection are warranted. Given the vulnerability of the taxa that we examined to cumulative fishery impacts, prospective MPAs derived from our data should be considered for interim protection measures during the protracted period between final network design and the enactment of MPA legislations. These recommendations reflect our scientific data, which are only one way of understanding the seascape. Our surveys did not cover many locations known to Indigenous peoples as biologically important. Consequently, Indigenous knowledge should also contribute substantially to the design of the MPA network.


Assuntos
Antozoários , Ecossistema , Perciformes , Poríferos , Animais , Biodiversidade , Canadá , Conservação dos Recursos Naturais/métodos , Oceano Pacífico
3.
PeerJ ; 8: e9825, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32913682

RESUMO

For many fish taxa, trophic position and relative fecundity increase with body size, yet fisheries remove the largest individuals, altering food webs and reducing population productivity. Marine reserves and other forms of spatial protection can help mitigate this problem, but the effectiveness of these management tools may vary interspecifically and spatially. Using visual survey data collected on the Central Coast of British Columbia, for 12 species of exploited rockfish we found that body size responses to spatial fishery closures depended on interspecific variation in growth parameter k (the rate at which the asymptotic body size is approached) and on location. For two closures, relative body sizes were larger at protected than at adjacent fished sites, and these differences were greater for species with lower k values. Reduced fishery mortality likely drove these results, as an unfished species did not respond to spatial protection. For three closures, however, body sizes did not differ between protected and adjacent fished sites, and for another closure species with higher k values were larger at fished than at protected sites while species with lower k values had similar sizes in both treatments. Variation in the age of closures is unlikely to have influenced results, as most data were collected when closures were 13 to 15-years-old. Rather, the lack of larger fish inside four of six spatial fishery closures potentially reflects a combination of smaller size of the area protected, poor fisher compliance, and lower oceanographic productivity. Interspecific differences in movement behavior did not affect body size responses to spatial protection. To improve understanding, additional research should be conducted at deeper depths encompassing the distribution of older, larger fish. Our study-which was conceptualized and executed by an alliance of Indigenous peoples seeking to restore rockfishes-illustrates how life history and behavioral theory provide a useful lens for framing and interpreting species differences in responses to spatial protection.

6.
PLoS One ; 7(6): e40083, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768226

RESUMO

As upper-level predatory fishes become overfished, mesopredators rise to become the new 'top' predators of over-exploited marine communities. To gain insight into ensuing mechanisms that might alter indirect species interactions, we examined how behavioural responses to an upper-level predatory fish might differ between mesopredator species with different life histories. In rocky reefs of the northeast Pacific Ocean, adult lingcod (Ophiodon elongatus) are upper-level predators that use a sit-and-wait hunting mode. Reef mesopredators that are prey to adult lingcod include kelp greenling (Hexagrammos decagrammus), younger lingcod, copper rockfish (Sebastes caurinus) and quillback rockfish (S. maliger). Across these mesopredators species, longevity and age at maturity increases and, consequently, the annual proportion of lifetime reproductive output decreases in the order just listed. Therefore, we hypothesized that the level of risk taken to acquire resources would vary interspecifically in that same order. During field experiments we manipulated predation risk with a model adult lingcod and used fixed video cameras to quantify interactions between mesopredators and tethered prey (Pandalus shrimps). We predicted that the probabilities of inspecting and attacking tethered prey would rank from highest to lowest and the timing of these behaviours would rank from earliest to latest as follows: kelp greenling, lingcod, copper rockfish, and quillback rockfish. We also predicted that responses to the model lingcod, such as avoidance of interactions with tethered prey, would rank from weakest to strongest in the same order. Results were consistent with our predictions suggesting that, despite occupying similar trophic levels, longer-lived mesopredators with late maturity have stronger antipredator responses and therefore experience lower foraging rates in the presence of predators than mesopredators with faster life histories. The corollary is that the fishery removal of top predators, which relaxes predation risk, could potentially lead to stronger increases in foraging rates for mesopredators with slower life histories.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Recifes de Corais , Peixes/crescimento & desenvolvimento , Peixes/fisiologia , Estágios do Ciclo de Vida/fisiologia , Comportamento Predatório/fisiologia , Animais , Colúmbia Britânica , Tomada de Decisões , Geografia , Especificidade da Espécie , Fatores de Tempo
7.
Biol Lett ; 6(4): 533-6, 2010 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-20181555

RESUMO

We provide evidence for a trophic cascade involving apex predators and mesopredators of marine temperate reefs, lingcod and rockfish, respectively. We measured spatio-temporal variation in the relative abundance of lingcod, subadult rockfish and two shrimp groups eaten by rockfish (Pandalus sp. and three smaller-bodied genera aggregated). Lingcod had an indirect positive effect on shrimps, as mediated by the direct negative effects of lingcod on rockfish and of rockfish on shrimps. These top-down effects on shrimps, however, were stronger for Pandalus than for small-bodied shrimps. Further, abundances of Pandalus and small-bodied shrimps were negatively correlated and the latter had a stronger positive effect on rockfish, suggesting that rockfish mediated asymmetrical apparent competition between shrimps. Our results indicate mechanisms by which predatory fishes may influence the structure of marine communities.


Assuntos
Ecossistema , Peixes/fisiologia , Cadeia Alimentar , Comportamento Predatório/fisiologia , Animais , Antozoários , Colúmbia Britânica , Decápodes/fisiologia , Demografia , Modelos Biológicos , Densidade Demográfica , Fatores de Tempo
8.
Oecologia ; 158(4): 775-86, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18953573

RESUMO

Many theoretical and experimental studies suggest that synergistic interactions between resources and predators influence foraging decisions and their fitness consequences. This framework, however, has been ignored almost completely by hypotheses on causes of the population decline of Steller sea lions (SSLs) (Eumetopias jubatus) in western Alaska. By comparing predictions from a dynamic state variable model to empirical data on the behaviour of individuals instrumented with satellite-linked time-at-depth recorders, we develop and find preliminary support for the hypothesis that, during winter in Prince William Sound, juvenile SSLs (a) underutilise walleye pollock, a predictable resource in deep strata, due to predation risk from Pacific sleeper sharks, and (b) underutilise the potential energy bonanza of inshore aggregations of Pacific herring due to risk from either killer whales, larger conspecifics, or both. Further, under conditions of resource scarcity-induced by overfishing, long-term oceanographic cycles, or their combination-trade-offs between mortality risk and energy gain may influence demographic parameters. Accordingly, computer simulations illustrated the theoretical plausibility that a decline of Pacific herring in shallow strata would greatly increase the number of deep foraging dives, thereby increasing exposure to sleeper sharks and mortality rates. These results suggest that hypotheses on the decline of SSLs should consider synergistic effects of predators and resources on behaviour and mortality rates. Empirical support for our model, however, is limited and we outline tasks for empirical research that emerge from these limitations. More generally, in the context of today's conservation crises, our work illustrates that the greater the dearth of system-specific data, the greater the need to apply principles of behavioural ecology toward the understanding and management of large-scale marine systems.


Assuntos
Comportamento Animal , Leões-Marinhos/fisiologia , Alaska , Animais , Simulação por Computador , Tomada de Decisões , Mergulho , Modelos Biológicos , Dinâmica Populacional , Comportamento Predatório , Assunção de Riscos , Tubarões/fisiologia
9.
Trends Ecol Evol ; 23(4): 202-10, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18308421

RESUMO

Recent studies document unprecedented declines in marine top predators that can initiate trophic cascades. Predicting the wider ecological consequences of these declines requires understanding how predators influence communities by inflicting mortality on prey and inducing behavioral modifications (risk effects). Both mechanisms are important in marine communities, and a sole focus on the effects of predator-inflicted mortality might severely underestimate the importance of predators. We outline direct and indirect consequences of marine predator declines and propose an integrated predictive framework that includes risk effects, which appear to be strongest for long-lived prey species and when resources are abundant. We conclude that marine predators should be managed for the maintenance of both density- and risk-driven ecological processes, and not demographic persistence alone.


Assuntos
Ecossistema , Dinâmica Populacional , Comportamento Predatório , Água do Mar , Animais , Biodiversidade , Conservação dos Recursos Naturais , Peixes , Cadeia Alimentar , Medição de Risco , Tubarões , Frutos do Mar , Tartarugas
10.
J Anim Ecol ; 76(5): 837-44, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17714261

RESUMO

1. A predictive framework of community and ecosystem dynamics that applies across systems has remained elusive, in part because non-consumptive predator effects are often ignored. Further, it is unclear how much individual-level detail community models must include. 2. Previous studies of short-lived species suggest that state-dependent decisions add little to our understanding of community dynamics. Body condition-dependent decisions made by long-lived herbivores under risk of predation, however, might have greater community-level effects. This possibility remains largely unexplored, especially in marine environments. 3. In the relatively pristine seagrass community of Shark Bay, Australia, we found that herbivorous green sea turtles (Chelonia mydas Linnaeus, 1758) threatened by tiger sharks (Galeocerdo cuvier Peron and LeSueur, 1822) select microhabitats in a condition-dependent manner. Turtles in poor body condition selected profitable, high-risk microhabitats, while turtles in good body condition, which are more abundant, selected safer, less profitable microhabitats. When predation risk was low, however, turtles in good condition moved into more profitable microhabitats. 4. Condition-dependent use of space by turtles shows that tiger sharks modify the spatio-temporal pattern of turtle grazing and their impacts on ecosystem dynamics (a trait-mediated indirect interaction). Therefore, state-dependent decisions by individuals can have important implications for community dynamics in some situations. 5. Our study suggests that declines in large-bodied sharks may affect ecosystems more substantially than assumed when non-lethal effects of these top predators on mesoconsumers are not considered explicitly.


Assuntos
Comportamento Animal/fisiologia , Ecossistema , Comportamento Predatório , Tubarões/fisiologia , Tartarugas/fisiologia , Animais , Constituição Corporal/fisiologia , Conservação dos Recursos Naturais , Meio Ambiente , Geografia , Dinâmica Populacional , Especificidade da Espécie
11.
J Theor Biol ; 223(1): 79-92, 2003 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-12782118

RESUMO

Many air-breathing aquatic foragers may be killed by aerial or subsurface predators while recovering oxygen at the surface; yet the influence of predation risk on time allocation during dive cycles is little known in spite of numerous studies on optimal diving. We modeled diving behavior under the risk of predation at the surface. The relationship between time spent at the surface and the risk of death is predicted to influence the optimal surface interval, regardless of whether foragers accumulate energy at a constant rate while at the food patch, deplete food resources over the course of the dive, or must search for food during the dive. When instantaneous predation risk during a single surface interval decreases with time spent at the surface, a diver should increase its surface interval relative to that which maximizes energy intake, thereby increasing dive durations and reducing the number of surfacings per foraging bout. When instantaneous risk over a single surface interval does not change or increases with increasing time at the surface, divers should decrease their surface interval (and consequently their dive duration) relative to that which maximizes energy intake resulting in more dives per foraging bout. The fitness consequences of selecting a suboptimal surface interval vary with the risk function and the way divers harvest energy when at depth. Finally, predation risk during surface intervals should have important consequences for habitat selection and other aspects of the behavioral ecology of air-breathing aquatic organisms.


Assuntos
Mergulho , Comportamento Predatório , Respiração , Animais , Metabolismo Energético , Modelos Biológicos , Risco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...